9 research outputs found

    Explainable Neural Networks based Anomaly Detection for Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPSs) are the core of modern critical infrastructure (e.g. power-grids) and securing them is of paramount importance. Anomaly detection in data is crucial for CPS security. While Artificial Neural Networks (ANNs) are strong candidates for the task, they are seldom deployed in safety-critical domains due to the perception that ANNs are black-boxes. Therefore, to leverage ANNs in CPSs, cracking open the black box through explanation is essential. The main objective of this dissertation is developing explainable ANN-based Anomaly Detection Systems for Cyber-Physical Systems (CP-ADS). The main objective was broken down into three sub-objectives: 1) Identifying key-requirements that an explainable CP-ADS should satisfy, 2) Developing supervised ANN-based explainable CP-ADSs, 3) Developing unsupervised ANN-based explainable CP-ADSs. In achieving those objectives, this dissertation provides the following contributions: 1) a set of key-requirements that an explainable CP-ADS should satisfy, 2) a methodology for deriving summaries of the knowledge of a trained supervised CP-ADS, 3) a methodology for validating derived summaries, 4) an unsupervised neural network methodology for learning cyber-physical (CP) behavior, 5) a methodology for visually and linguistically explaining the learned CP behavior. All the methods were implemented on real-world and benchmark datasets. The set of key-requirements presented in the first contribution was used to evaluate the performance of the presented methods. The successes and limitations of the presented methods were identified. Furthermore, steps that can be taken to overcome the limitations were proposed. Therefore, this dissertation takes several necessary steps toward developing explainable ANN-based CP-ADS and serves as a framework that can be expanded to develop trustworthy ANN-based CP-ADSs

    Building Energy Load Forecasting using Deep Neural Networks

    Full text link
    Ensuring sustainability demands more efficient energy management with minimized energy wastage. Therefore, the power grid of the future should provide an unprecedented level of flexibility in energy management. To that end, intelligent decision making requires accurate predictions of future energy demand/load, both at aggregate and individual site level. Thus, energy load forecasting have received increased attention in the recent past, however has proven to be a difficult problem. This paper presents a novel energy load forecasting methodology based on Deep Neural Networks, specifically Long Short Term Memory (LSTM) algorithms. The presented work investigates two variants of the LSTM: 1) standard LSTM and 2) LSTM-based Sequence to Sequence (S2S) architecture. Both methods were implemented on a benchmark data set of electricity consumption data from one residential customer. Both architectures where trained and tested on one hour and one-minute time-step resolution datasets. Experimental results showed that the standard LSTM failed at one-minute resolution data while performing well in one-hour resolution data. It was shown that S2S architecture performed well on both datasets. Further, it was shown that the presented methods produced comparable results with the other deep learning methods for energy forecasting in literature

    Explainable Machine Learning for Public Policy: Use Cases, Gaps, and Research Directions

    Full text link
    Explainability is a crucial requirement for effectiveness as well as the adoption of Machine Learning (ML) models supporting decisions in high-stakes public policy areas such as health, criminal justice, education, and employment, While the field of explainable has expanded in recent years, much of this work has not taken real-world needs into account. A majority of proposed methods use benchmark datasets with generic explainability goals without clear use-cases or intended end-users. As a result, the applicability and effectiveness of this large body of theoretical and methodological work on real-world applications is unclear. This paper focuses on filling this void for the domain of public policy. We develop a taxonomy of explainability use-cases within public policy problems; for each use-case, we define the end-users of explanations and the specific goals explainability has to fulfill; third, we map existing work to these use-cases, identify gaps, and propose research directions to fill those gaps in order to have a practical societal impact through ML.Comment: Submitted for review at Communications of the AC

    Explainable machine learning for public policy: Use cases, gaps, and research directions

    Get PDF
    Explainability is highly desired in machine learning (ML) systems supporting high-stakes policy decisions in areas such as health, criminal justice, education, and employment. While the field of explainable ML has expanded in recent years, much of this work has not taken real-world needs into account. A majority of proposed methods are designed with generic explainability goals without well-defined use cases or intended end users and evaluated on simplified tasks, benchmark problems/datasets, or with proxy users (e.g., Amazon Mechanical Turk). We argue that these simplified evaluation settings do not capture the nuances and complexities of real-world applications. As a result, the applicability and effectiveness of this large body of theoretical and methodological work in real-world applications are unclear. In this work, we take steps toward addressing this gap for the domain of public policy. First, we identify the primary use cases of explainable ML within public policy problems. For each use case, we define the end users of explanations and the specific goals the explanations have to fulfill. Finally, we map existing work in explainable ML to these use cases, identify gaps in established capabilities, and propose research directions to fill those gaps to have a practical societal impact through ML. The contribution is (a) a methodology for explainable ML researchers to identify use cases and develop methods targeted at them and (b) using that methodology for the domain of public policy and giving an example for the researchers on developing explainable ML methods that result in real-world impact

    Nucleus Basalis of Meynert Stimulation for Dementia: Theoretical and Technical Considerations

    Get PDF
    Deep brain stimulation (DBS) of nucleus basalis of Meynert (NBM) is currently being evaluated as a potential therapy to improve memory and overall cognitive function in dementia. Although, the animal literature has demonstrated robust improvement in cognitive functions, phase 1 trial results in humans have not been as clear-cut. We hypothesize that this may reflect differences in electrode location within the NBM, type and timing of stimulation, and the lack of a biomarker for determining the stimulation’s effectiveness in real time. In this article, we propose a methodology to address these issues in an effort to effectively interface with this powerful cognitive nucleus for the treatment of dementia. Specifically, we propose the use of diffusion tensor imaging to identify the nucleus and its tracts, quantitative electroencephalography (QEEG) to identify the physiologic response to stimulation during programming, and investigation of stimulation parameters that incorporate the phase locking and cross frequency coupling of gamma and slower oscillations characteristic of the NBM’s innate physiology. We propose that modulating the baseline gamma burst stimulation frequency, specifically with a slower rhythm such as theta or delta will pose more effective coupling between NBM and different cortical regions involved in many learning processes

    Nucleus Basalis of Meynert Stimulation for Dementia: Theoretical and Technical Considerations

    No full text
    <p>Deep brain stimulation (DBS) of nucleus basalis of Meynert (NBM) is currently being evaluated as a potential therapy to improve memory and overall cognitive function in dementia. Although, the animal literature has demonstrated robust improvement in cognitive functions, phase 1 trial results in humans have not been as clear-cut. We hypothesize that this may reflect differences in electrode location within the NBM, type and timing of stimulation, and the lack of a biomarker for determining the stimulation’s effectiveness in real time. In this article, we propose a methodology to address these issues in an effort to effectively interface with this powerful cognitive nucleus for the treatment of dementia. Specifically, we propose the use of diffusion tensor imaging to identify the nucleus and its tracts, quantitative electroencephalography (QEEG) to identify the physiologic response to stimulation during programming, and investigation of stimulation parameters that incorporate the phase locking and cross frequency coupling of gamma and slower oscillations characteristic of the NBM’s innate physiology. We propose that modulating the baseline gamma burst stimulation frequency, specifically with a slower rhythm such as theta or delta will pose more effective coupling between NBM and different cortical regions involved in many learning processes.</p

    On the Importance of Application-Grounded Experimental Design for Evaluating Explainable ML Methods

    Full text link
    Machine Learning (ML) models now inform a wide range of human decisions, but using ``black box'' models carries risks such as relying on spurious correlations or errant data. To address this, researchers have proposed methods for supplementing models with explanations of their predictions. However, robust evaluations of these methods' usefulness in real-world contexts have remained elusive, with experiments tending to rely on simplified settings or proxy tasks. We present an experimental study extending a prior explainable ML evaluation experiment and bringing the setup closer to the deployment setting by relaxing its simplifying assumptions. Our empirical study draws dramatically different conclusions than the prior work, highlighting how seemingly trivial experimental design choices can yield misleading results. Beyond the present experiment, we believe this work holds lessons about the necessity of situating the evaluation of any ML method and choosing appropriate tasks, data, users, and metrics to match the intended deployment contexts
    corecore